Stereochemistry and amyloid inhibition: Asymmetric triplex metallohelices enantioselectively bind to Aβ peptide
نویسندگان
چکیده
Stereochemistry is vital for pharmaceutical development and can determine drug efficacy. Herein, 10 pairs of asymmetric triplex metallohelix enantiomers as a library were used to screen inhibitors of amyloid β (Aβ) aggregation via a fluorescent cell-based high-throughput method. Intriguingly, Λ enantiomers show a stronger inhibition effect than Δ enantiomers. In addition, the metallohelices with aromatic substituents are more effective than those without, revealing that these groups play a key role in the Aβ interaction. Fluorescence stopped-flow kinetic studies indicate that binding of the Λ enantiomer to Aβ is much faster than that of the Δ enantiomer. Furthermore, studies in enzyme digestion, isothermal titration calorimetry, nuclear magnetic resonance, and computational docking demonstrate that the enantiomers bind to the central hydrophobic α-helical region of Aβ13-23, although with different modes for the Λ and Δ enantiomers. Finally, an in vivo study showed that these metallohelices extend the life span of the Caenorhabditis elegans CL2006 strain by attenuating Aβ-induced toxicity. Our work will shed light on the design and screening of a metal complex as an amyloid inhibitor against Alzheimer's disease.
منابع مشابه
Stereochemistry and amyloid inhibition: Asymmetric triplex metallohelices enantioselectively bind to Ab peptide
Guan et al., Sci. Adv. 2018;4 : eaao6718 19 January 2018 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to originalU.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Stereochemistry and amyloid inhibition: Asymmetric triplex metallohelices enantioselec...
متن کاملMolecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid
Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...
متن کاملCaspase inhibition in neuroinflammation induced by soluble β amyloid monomer, protects cells from abnormal survival and proliferation, via attenuation of NFқB activity
Introduction: Evidence suggests that neuronal apoptosis in neurodegenerative diseases is correlated with inflammatory reactions. The beneficial or detrimental role of apoptosis in neuroinflammation is unclear. Elucidating this question may be helpful in management of neurodegenerative diseases. Since TNF-α is able to induce apoptosis as well as increased viability of the cells by activation ...
متن کاملScreening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons
Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...
متن کاملEffects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کامل